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SUMMARY

An analytical solution has been obtained for the equations of motion
of water droplets impinging on a wedge in a two-dimensional supersonic
flow field with a shock wave attached to the wedge. The closed-form
solution yields analytical expressions for the equation of the droplet
trajectory, the local rate of impingement and the impingement velocity at
any point on the wedge surface, and the total rate of impingement. The
analytical expressions are utilized in the determination of the impinge-
ment of water droplets on the forward surfaces of diamond sirfoils in
supersonic flow fields with attached shock waves.

For a wedge, the 1esults provide information on the effect of the
semi-apex engle, free-stream Mach number, pressure altitude, and droplet
size. For the diamond airfoil, additional calculations provide informa-
tion on the effect of airfoil thickness ratio, chord length, and angle
of attack.

The results for the diamond airfoils are also correlated in terms of
the total collection efficiency as a function of a modified inertia
parameter. The results are presented for the following range of vari-
ables: droplet diameter from 2 to 100 microns, free-stream Mach numbers
from 1.1 to 2.0, pressure altitudes from sea level to 30,000 feet, free-
stream static temperatures from 420° to 460° R, semi-apex angles for the
wedge from 1.14° to 7.97° and corresponding diamond airfoil thiclmess-to-
chord ratios from 0.02 to 0.14, and chord lengths from 1 to 20 feet.

INTRODUCTION

The problem of ice prevention on aircraft flying at subsonic speeds
up to flight critical Mach numbers has been a subject of considerable
study and research by the NACA. The recent advent of aircraft flying at
transonic and supersonic speeds has required an extension of these icing
studies to higher speeds. That an icing problem exists in the transonic
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and supersonic speed range is verified in reference 1, which shows by an
enalytical investigation with experimental confirmation thet diamond

or symmetrical double-wedge airfoils are subject to possible icing at
flight Mach numbers as high as 1.4. A similar result is expected for
other airfoil shapes that are being considered for use at transonic and
supersonic flight speeds.

In conducting research on the problem of ice prevention on aircraft
and missiles, regardless of the magnitude of the flight speed, it is
egsential that the impingement of cloud droplets on airfoils and other
aerodynamic bodies be determined either through theoretical calculations
or through experimentation. The impingement variables which must be
determined are the total water catch, the extent of impingement, and the
rate of impingement per unit area of body surface. These variables can
be determined analytically from calculations of the cloud-droplet trajec-
tories obtained for the various aerodynamic bodies. Investigators have
reported the results of cloud-droplet trajectories about right-circular
cylinders (refs. 2 to 5) and about airfoils (refs. 6 to 9) immersed in
an incompressible fluid. An evaluation of the effect of compressibility
on the droplet trajectories about cylinders and airfoils up to the criti-
cal flight Mach number is presented in reference 10.

At present there exists little information on the impingement of
droplets on aerodynamic bodies in a supersonic air stream. Concentration
of past effort on the problems of impingement on airfoils at subsonic
flight speeds and the present lack of counvenient and rapid means for
obtaining the rotational flow fields about airfoils at supersonic speeds
are possible explaenations for the scarcity of trajectory calculations for
the supersonic region. An initisl contribution to the solution of the
over-all problem of impingement of water droplets on aerodynamic bodies
at supersonic speeds is given in reference 11, which presents an analysis
of the water-interception characteristics of a wedge in & supersonic flow
field.

The present report extends the analysis of reference 11 and further
presents an extensive study of the impingement of water droplets on two-
dimensional wedges and diamond airfoils for supersonic flight speeds that
result in attached shock waves and constant velocity fields behind the
shock waves. TFor the wedge angles and diamond airfoil thickness ratios
to be considered herein, the shock-wave attachment Mach number varies
from a value slightly greater than 1 to about 1l.4. The method employed
is based on an analytical solution of the equations of motion by means of
a closed-form integration. The closed-form solution yields analytical
expressions for the equation of the trajectories, the local impingement
efficiencies, the velocity at any point on the trajectories, and the total
rate of impingement. This solution has been made possible by using an
empirical relation for the dreg coefficients for spheres that gives a
good approximstion to the experimental drag coefficients.
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The results of calculations for the rate, extent, and distribution
of the impingement of water droplets on wedges and diamond airfoils are
presented herein. The ranges of variables included for the wedge are
Mach number from 1.1 to 2.0; pressure altitude of sea level, 15,000 feet,
and 30,000 feet; droplet diameter from 2 to 100 microns; free-stream
static temperature of 4200, 4400, and 460° R; and the tangent of the semi-
apex angle from 0.02 to 0.14. The ranges of variables for the diamond or
double-~wedge airfoil are the same as those for the wedge, and the addi-
tional variasbles for the diamond airfoil range from 1 to 20 feet for the
chord length and from 2 to 14 percent for the thickness.

The work presented in this report was performed et the NACA lewis
laboratory.

ANALYSIS
Statement of Problem

The solution of the problem of impingement of water droplets on a
two-dimensional wedge at supersonic speeds with an attached shock
wave 18 not as difficult as that for the impingement on various asirfoils
at low subsonic speeds. For the wedge at supersonic speeds with an
attached shock wave, the air velocity everywhere shead of the shock wave
is constant and equal to the free-stream air velocity vy (fig. 1). The

alr velocity behind the shock wave V, 1is also everywhere constant and

parallel to the wedge surface. All the droplets have the same initisal
velocity (that of the free-stream air velocity), and their trajectories
are exactly coincident with the air streamlines upstream of the shock
wave. All water droplets of a given size are subjected to identical air-
velocity fields, which in turn produce identical force systems downstream
of the shock wave, irrespective of the point along the shock wave where
the droplets cross the wave. It follows, therefore, that, for droplets
of a given size, all the trajectories in a given problem are identical
with respect to the point where the droplet crosses the shock wave.

By adopting a frame of reference which moves at the constant velocity
of the air Vo downstream of the shock wave, the problem of the droplet

motion is reduced to the still-air problem, defined as the determination
of the motion of a droplet that, having an initial velocity, is projected
into quiescent air. Hence, relative to the moving frame of reference, the
initial velocity of the droplet upon crossing the shock wave is equal to
the vectorial difference of the free-stream air velocity Vi and the air

velocity V2 downstream of the shock wave. Adoption of the frame of

reference moving with a constant velocity reduces the problem from the
solution of two simultaneous nonlinear second-order differential equations
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in the fixed coordinate system to the solution of a single nonlinear
second-order differential equation in the moving coordinate system. At
any given instant, the droplet displacement relative to the point of
intersection with the shock wave in the fixed frame of reference is
obtained by adding vectorially the droplet displacement within the moving
frame of reference to the displacement of the moving frame of reference
for the same increment of time.

This general method of attack was used In reference 11, where the
one second-order differential equation representing the droplet motion
relative to the air velocity behind the shock wave was integrated graphi-
cally. However, it is possible to obtain a completely analytical solution
by means of a closed-form integration without resorting to the use of
numerical integrations or analog computing equipment, if an empirical
relation is assumed for the drag coefficient as a function of the Reynolds
number of the droplet relative to the air. It will be shown that this
closed-form integration of the still-air problem when applied to the wedge
in supersonic flow with attached shock wave yields the equations for the
trajectories of the water droplets and the droplet velocities at any point
on the trajectories and makes available relations for the rates of total
water impingement and the local rates of water impingement along the wedge
surface. Furthermore, it is shown that these equations can also be
readily applied to the determination of the droplet impingement on a
diamond airfoil in supersonic flow with attached shock waves.

Most of the usual assumptions made in the previous investigations on
impingement at subsonic speeds are also required for this investigation.
These assumptions are: (1) The water droplets are always spherical and
do not change in size, (2) the force of gravity on the droplet may be
neglected in comparison to the dreg forces, (3) the drag of the air on
the droplet is that of a viscous incompressible fluid. Here it is addi-
tionally assumed that (a) the two-dimensional supersonic flow field about
the wedge is frictionless except within the infinitesimally thin attached
shock wave, (b) no condensation shock occurs and no change in phase occurs
as the water droplets traverse the oblique shock wave, and (c) the
unbalance of the forces on the water droplet from the instant it enters
the shock wave until it emerges from the shock wave can be neglected in
the calculation of the trajectories.

Equation of Droplet Motion in Moving Reference Frame

The velocity of the droplet in the moving frame of reference is

U= IVd-'\'le (1)

- 2782
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where V& is the droplet velocity with respect to the fixed frame of
reference, and ﬁ% is the air velocity downstream of the attached shock

wave also with respect to the fixed frame of reference (fig. 1). In the
frame of reference moving with the velocity Vs, (air velocity downstream

of shock wave), the statement of Newton's law of motion for the water
droplet becomes

D=-Cp (%) pzztazUz =( ) ﬂa.spw (%%) (2)

N

from which

W (3)(2)(L) ()
at 8/\py/ \a D
A complete list of symbols is given in appendix A.

Equation (3) is the differential form of the equation of motion of
a droplet which is projected with an initial velocity into a region of
quiescent air (the so-called still-air problem). The shock wave is con-
sidered to be a surface of discontinuity from which the droplets emerge
with a velocity Vi. In this case the initial velocity of the droplet is

Uy = |[Vy - Vp (4)

which is the magnitude of the vector difference of the air-velocity vectors
upstream and downstream of the attached shock wave. As can be shown from
a. consideration of the continuity equation and the equation for conserva-
tion of momentum across the oblique shock wave, the velocity vector Uj;

1s normal to the shock wave. At any subsequent instant of time the
relative droplet velocity vector U retains the same angular orientation
to the shock wave and changes only 1n magnitude.

In reference 11 the solution of equation (3) has been obtained by
numerical integration. The result obtalned in this menner mskes it neces-
sary to use a graphical procedure in determining the trajectories and the
local rates of impingement. However, an analytical solution of equa-
tion (2), which eliminates the graphical procedure, can be obtained if
the experimental values of the drag coefficient Cp are expressed in a

function involving the Reynolds number Re,.. The relation is
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Cp = %’r— (1 +€Re ™) (5)

where € and m are the empirical constants. This empiricel relation
is & valid approximation in the range of Reynolds numbers to which cloud
droplets are subjected in trajectory calculgtions. Substitution of the
expression for Cp (eq. (5)) in equation (3) results in the expression

m
a4’k 9\ P2\ /U ZppUa
Et' = ——2 = - (-é-) —_— -—2- 1l +¢€ (6)
at Pw/ \a H2
where the locel relative Reynolds mumber Re,. = szUa/pz. The displace-

ment of the water droplet in the moving frame of reference is x and is
measured from the air streamline which intersects the shock wave at the
point where the water droplet entered the air-flow field downstream of
the shock wave. The closed-form integration of the differential equa-
tion (6) is presented in appendix B. The use of 2/3 for the exponent
m and 0.158 for the value of the empirical constant € in equation (5)
ylelds an empirical curve for the drag coefficient as a function of the
locel Reynolds numbers that approximates very well the variation of the
experimental values of the drag coefficient in the range of Reymolds
numbers from 0.5 to 500. The value of 2/3 for the exponent m also
facilitates the closed-form integration of the differential equation of
motion. In figure 2 a graph of the empirical relation 1s presented,
along with the drag coefficient data of references 4 and 12.

The results of the integration are given by the following equations:

x = -3/2 (s_;v) I:Rer’il/s /2, o1 (Rer,i-l/s E-1/2) i

1 - tan~1 1/(3%,1'2/3 el l)eT - ZI?J

ﬂRer,i;z/s et o+ 1) eT -1
(7)

where

T dimensionless time variable, (Suz/pwaz)t

2782
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Rer,i initial value of the local relaetive Reynolds number Ref,

2apUs /ug
a droplet radius, ft
Py water density, 1.9398 slugs/cu ft
P2 density of air behind shock wave, slug/cu £t
€ empirical constant of relation of drag coefficient as function

of Reynolds number, 0.158

Uy [( -2/3 -1 ) T ]-3/2
U = R € +1) e -1 (8)
Rer,i €372 er:i
and
o)
Xm =-% €—3/2 (Eg) (ﬁer,il/3 €l/2 - % +JP) (9)
where

- -1/3 .-1/2
CP=tanl(Rer’i /3 ¢ />, 0= 9= n/2

The intermediate steps of integration are given in appendix B.

Equation (7) and (8) give, respectively, the displacement and the
velocity of the droplet at any instant in the moving frame of reference.
The displacement of the droplet with respect to the point where it crossed
the shock wave can be obtained by a vectorial addition of the displacement
X and the displacement of the moving reference frame in the corresponding
time interval. The droplet velocity V3 relative to the fixed frame of

reference must also be obtained by the vectorial addition of U
(eq. (8)) and V, (the air velocity downstream of the shock wave). Equa-

tion (9) gives the maximum value of x that is obtained as the time of
travel in the air-flow field downstream of the shock wave approaches
infinity. The significance of this quantity will be discussed in sub-
sequent sections.
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Relations Required for Application of Closed-Form Solution
to Obtain Droplet Motion and Impingement in

Fixed Reference Frame

JTmpingement on wedges. - For a problem of given aerodynamir condi-
tions, the trajectories of all the water droplets for a given size are
identical when the points where the droplet trajectories intersect the
shock wave are superimposed. This unique characteristic of the water-
droplet trajectories about a wedge in supersonic flow with an attached
oblique shock wave is the result of two constant veloclty fields, one
upstream and one downstream of the shock wave. Therefore, only one set
of equations for a single trajectory will be necessary to calculate the
impingement parameters for a specified problem, including a given droplet
size. The values of the initial relative velocity U,, the initial

Reynolds number Rer,i) and the density ratio pw/pz are needed for

substitution in the closed-form solution of the equations of droplet
motion. These values can be obtained from information availaeble in
reference 13 and from the use of simple algebraic and trigonometric rela-
tions for given values of the free-stream Mach number M;, the free-stream

static temperature t;, the angle of surface inclination to the free-
stream direction o, the free-stream static pressure p,, and the droplet

diemeter d. These relations result in the following expressions for the
initial relative velocity and initial relative Reynolds number:

U; = |0 =7y \,l +Q% - 2Qcos 0 = Vyo (10)
ap P2
T 1
R =2, Myw | — 1
r,1 2R (’u'z'tlﬂz) 1 (91 (11)
where
Q v/,

R 53.3 ££-1b/(1b)(°F)
T 1.4

g 32.2 ft/sec?
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A convenient form of the solution for the impingement on a wedge or
the front half of a diamond airfoil is obtained if S 1is defined as the
distance to the point of impingement measured from the leading edge for
a water droplet that enters the flow field behind the shock wave at a
distance { above the leading edge (fig. 1). The unique relation between
S and §{ in a given problem for droplets of the same size is quite
readily determined by considering the displacement of the water droplets
as the vectorial sum of the displacement of the water droplet relative
to the moving frame of reference and the displacement of the moving refer-
ence frame relative to a fixed frame of reference (reférred to wedge).
Since the moving reference frame has a velocity equal to the air velocity
Vo, which is constant in megnitude and parallel to the wedge surface,

only the droplet travel in the moving reference frame contains the com-
ponent of droplet travel which represents the approach of the water
droplet to the wedge surface. For a water droplet starting from point A
and impinging on the wedge surface at point D (fig. 1), the displacement
of the moving reference frame (= Vot, where t 1is zero at point A) is

given by the displacement vector AB equal to Eﬁ, and the droplet motion
in the moving frame of reference is given by the displacement vector BD
equel to AC. Therefore, relative to the starting point at A (fig. 1),
the displacement of the water droplet to the point of impingement at D

is obviously equal to (AB + BD) or to (AC + CD). From figure 1 the
displacement of the water droplet at the point of impingement D, meas-
ured from the leading edge at E, is given by adding the vector EA to
the displacement vector from the starting point A, and the displacement

of the droplet at D referred to the leading edge is

s=|®| = A+ +T0| = |6+ 00| = |E| + [B] =t + & (12

where { 1is defined as the magnitude of the displacement vector Ea__and
g' (= Vzt) is defined as the magnitude of the displacement vector CD

(the displacement of the moving frame of reference). As previously noted,
S 1s the distance from the leading edge to the point of impingement of a
water droplet that initially (upstream.of the shock wave) was on the
streamline at a distance { <from the leading edge, measured normal to
the streamlines.

The values of §{ and { are obtained in terms of x, the distance
of travel in the moving reference frame, from simple trigonometric identi-
ties involving the various angles shown in figure 1:

£ = x sin 6 tan (v+0) (13)

where x is givén.by‘gquation (7), and V 1is the angle between the rela-
tive velocity vector U and the free-stream air velocicy vector Vl and

is given by
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v = sin‘l[(sin 9) %] (13a)

t = x sec (Vo) (14)

Substitution of equation (14) into equation (12) for the surface distance
to the point of impingement yields the following:

2
S = x sec P+0) + Vo <§Ef;>‘r (15)
2

where T 1s the dimensionless time variable used in the determination
of x and is defined in the previous section.

Since x is a function of T in equations (13) and (15), the expres-
sions for { and S, respectively, are functions of T. However, since
T cannot be eliminated from equations (13) and (15), S cannot be obtained
explicitly as a function of {. Nevertheless, the curves of {, the
initial displacement of the water-droplet trajectory from the leading edge
normal to the free-stream direction, against S, the distance to the point
of impingement of the stated water-droplet trajectory, can be obtailned by
substitution of the same set of values for T in the expressions for {
and S.

An analytical expression for the locel jupingement efficiency, which

is designated as B, can be obtained from the above expressions for ¢§
and S. The locgl impingement efficiency P is defined by the expression

AS —=0

at

_ a &
- i (B)-%-F (16)

ar

where A, is the difference in the initiel displacements of two water
droplets having very nearly equal initlal displacements, and AS is the
small increment of wedge surface between the points of impingement of the
two water droplets. Differentiating { and S with respect to T and
performing the division indicated by equation (16) yield the following
expression for B:

TR, T 62 e [(Rer 1—2/3 el 1) el - 1]3/2 e

L T A S

nl nl a pw

2782
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where

n) = sin 6 tan (V+o) (18a)

n, = sec (V+0) (18b)
p,8°

ng =V Ty - Vo (t/T) (18c)

Since B and S both are functions of T, the local impingement effi-
clency B at any point on the wedge surface is determined by using the
same velue of T in equations (17) and (15). The value of B that
exists as the point of impingement of the water droplet on the wedge sur-
face approaches the leading edge as a limit (S—0) is defined and
given by the following:

1

Bn = lim = = gin o 19

0 s——>o[B:I nz+n3<3 T 1> (19)
D] B \a? Py Uy

The magnitude and direction of the droplet velocity at the point of
impingement vd,im (relative to the fixed frame of reference) can also

be easily obtained at any point on the wedge surface as

U, \2 U
Va,im = VlJ Q2 4+ of (ﬁiﬂl) + 2Q w(ﬁ—?-l) cos (V+0) (20)

1|72 st o40) (21)
Bim =0 - ol = 0 - gin” sin (V+o 21
im Va,im
where K 1is the angle between the free-stream velocity vector Vi and
the droplet velocity vector Va, and o' 1is the angle between the droplet
velocity vector Vd and the air velocity vector Vz. In equations (20)
and (21) for a given trajectory, Vl,i), w, Uj, V, and 0 are constants.
Therefore, for a given trajectory, Vd,im and K;  are functions only of

U (eq. (8)) which is in turn a function of T, the dimensionless time
veriable.
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Impingement on diamond airfoils. - The impingement on a diamond air-
foil may be obtained from the solution to the problem of impingement on
a wedge as presented heretofore. In this report a diamond airfoil is
considered to be a symmetrical double-wedge airfoil, the maximm thickness
of which occurs at 50 percent of chord (fig. 3). At zero angle of attack,
the impingement on & diemond airfoil will be limited to the region from
the leading edge to the shoulder at 50 percent of chord. The solution
for impingement on a wedge surface having a given semi-apex angle o (the
angle of inclination of either wedge surface to the free-stream direction)
can a8lso be used as the solution for a diamond airfoil where the thickness
ratio of the dianiond airfoil 1s equal to tan o, the tangent of the semi-
apex angle, and where the droplet size and other parameters of the problen
are the same as for the wedge. Therefore, the values of the local impinge-
ment efficiencies B and PBp at any given point on the surface will be
identical for both the wedge and diamond airfoil under the aforementioned
similarity of conditions.

The solution for the impingement on the diamond airfoil at angle of
attack can also be obtained from the solution for Impingement on a wedge
as for the case of the diamond airfoil at zero angle of attack. When
the symmetricel diamond airfoil is at angle of attack o, the angle of
inclination of its forward upper surface to the free-gtream direction is
equal to (o-a) and that of the forward lower ‘surface of the diamond
airfoil is equal to (o+x). Therefore, the solution to the impingement
on the upper and lower surfaces of the diamond airfoil is obtained from
the solutions for impingement on wedges having the redefined semi-apex
angles of (o-a) and (o+a), respectively, where the droplet size and
other paremeters of the problem are kept the same. For the diamond air-
foils at angles of attack having tangents equal to or greater than the
thickness ratio, the water droplets will not impinge on the upper surface.
At angles of attack having tangents greater than the thickness ratio,
some water droplets may impinge on the lower surface beyond 50 percent of
chord. These conditions are presented in figure 3, which illustrates
schematically the three conditions. For a < tanfi (T/c), the impinge-
ment occurs on surfaces AC and AB; for o = tan-1 (T/c), impingement
occurs only on surface AC; for a> tanfl (T/c), impingement occurs on
lower surface AC and may occur on lower surface CD. However, the
condition where a > tan~l (T/c) is not considered herein, since the
solution presented in this report is not valid for the determination of
trajectories of droplets impinging on the surface beyond the shoulder or
50 percent of chord of the diamond airfoil (surfaces BD or CD) where
a portion of the trajectories is within the expansion zone emanating from
the shoulder.

2782
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RESULTS AND DISCUSSION

From the equations presented in the previous section and in appen-
dix B, the impingement of water droplets on the wedge in a supersonic
flow fleld with an attached shock wave can be calculated over a range of
free-stream conditions, wedge angles, and droplet sizes. As has been
previously indicated, the impingement characteristics of the diamond
airfoil (at zero angle of attack and also for small values of angle of
attack) can be readily determined from the impingement on wedges for
similar conditions. The results for the wedge and diamond airfoil are
presented and discussed separately. A comparison of the total collection
efficiency and the water impingement rate for a diamond airfoil at zero
angle of attack with those for a NACA 0006-64 airfoil at zero angle of
attack is presented in appendix C.

Wedge

Local impingement efficiency. - The rate of water impingement on a
local area of wedge ori alirfoil surface 1is proportional to a dimensionless
term B, the local impingement efficiency. The local rate of water
impingement in pounds per hour per square foot is

WB = 0.329 Vle

where B 1is the fractional part of the meximm water that could impinge
on & locel area of the wedge or airfoil, if all the droplet trajectories
were perallel to each other and the surface of impingement were projected
into a plane perpendicular to the trajectories. The locel impingement,
when given as a function of the surface distance of the wedge, allows the
determination of the local rate of impingement of water droplets at any
point on the surface, the total impingement of water droplets on the
entire surface or any given portion of the surface, and the extent of
impingement on the surface. The local impingement efficiency B is
related to a point at a given distance S on the wedge surface in equa-
tions (15), (17), and (19) by the dimensionless time variable t, which
is common to all three expressions. The variation of the local impinge-
ment efficiency B with S, the surface distance along the wedge, is
presented in figure 4 for an extensive range of free-stream conditions,
semi-apex angles, and droplet sizes. The values of P at the leading
edge (S—»0) 1is the sine of the semi-apex angle (sin o); and as S
increases, the value of B decreases rapidly and approaches the value of
zero asymptotically as S approaches infinity. However, it is to be
noted that negligibly small values of B (B ® 1 percent of Bp for

the wedge) are attained at large but finite values of S.
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The curves of B as a function of S presented in figure 4 are
those of an idealized situation. The assumed two-dimensional supersomnic
flow field about the wedge does not account for a stagnation point that
mist exist at the leading edge of the wedge, regardless of the sharpness
of the leading edge. In addition, the leading edge of wedges and diamond
airfoils might be considered to be somewhat rounded when subJjected to
considerable magnification. Therefore, it is reasonable to assume that
very near the leading edge (S —0) the value of B would actually be
greater than the calculated velue of B at the given distance S. How-,
ever, this should have a negligible effect on the rest of the B curve
and also on the total impingement on the wedge, since the effect of a
stagnation point would be limited to a very small region about the leading

edge.

For S approaching very large values, the calculated values of 8
probably differ somewhat from actual values obtained in flight, because
the analytical solution of the present report does not consider the
existence of the boundary layer on the wedge surface. Since the boundary-
layer thickness increases with the surface distance along the wedge,
droplets which impinge at large distances from the leading edge actually
would have traveled through the boundary layer for some non-negligible
interval of time. However, only a very small fraction of the total water
droplets of a given size impinge under this condition, and for large
values of S the values of B are negligibly smell. For example, in
figure 4(a) such would be the case for values of S greater than 8 or
9 feet, where B < 0.0002 as compered with B, = 0.02. .

2782

A preliminary survey disclosed a negligible effect of the free-
stream static temperature on the local impingement efficiency as a func-
tion of the surface distance along the wedge (B against 8). Values
of B and corresponding values of S were calculated for free-stream
static temperatures of 4200, 440°, and 460° R, for a free-stream Mach
number of 1.3, pressure altitude of 15,000 feet, droplet diameter of
20 microns, and tangent of the semi-apex angle of 0.06. The values of
B for the free-stream static temperature of 420° and 460° R are within
1l percent of the values of B at the free-stream static temperature of
440° R. Since these calculations show that curves of B against S for
the three values of free-stream static temperature form practically a
single curve when plotted to the usual scales, no figures are presented
herein to illustrate the effect of free-stream static temperature on
impingement. Furthermore, the results included herein, which are calcu-
lated for a free-stream static temperature of 440° R, may be used in the
range of temperature from 420° to 460C R or possibly an even greater
range of temperature.

The effect of the free-stream static pressure on the local impinge-
ment efficiency as a function of the surface distance along the wedge
(B against S) is presented in figure 4(a) for pressure altitudes of v
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sea level, 15,000, and 30,000 feet. Increasing the pressure altitude
(decreasing the free-stream static pressure) increases the values of B
at any distance 6. For example, at S = 1.5 at sea level, B is 0.0052;
and at 30,000 feet, B 1is 0.0071. Since By (the value of B at

S = 0) 1is equal to the sin o, where o is the semi-apex angle, the
curves for the three pressure altitudes have the same meximum value of 8.
Also, for the various pressure altitudes the extent of impingement along
the wedge surface 1is essentially the same.

The effect of the semi-apex angle ¢ of the wedge on the local
impingement efficiency as a function of the surface distance along the
wedge is presented in figure 4(b) for values of tan ¢ from 0.02 to 0.10.
Since the values of BO are equal to sin o, increasing the semi-apex

angle of the wedge results in an increase of B;. The surface extent of
perceptible impingement (as characterized by B = 0.01 BO) does not
vary as the wedge thickness is increased.

The effect of free-stream Mach number on the B curve is presented
in figure 4(c). The curves of B as a-function of S are given for
free-stream Mach numbers of 1.2, 1.3, 1.4, 1.5, and 2.0. For the wedge
semi-apex angle presented in the figure (tan o = 0.04), the value of
My = 1.2 1is close to the shock-wave attachment Mach number. The shock-

wave gttachment Mach number 1s s function of the wedge semi-apex angle
and is defined as that Mach number below which the shock wave is detached
from the wedge. An increase in the free-stream Mach number M; results

in an increased surface extent of perceptible impingement and also in an
increased value of B at any given distance S (except at S = O, where
B=PBp=sin o and at S—>m», where B—>0). The increase in the sur-

face extent of perceptible impingement is shown in figure 4(0), in which
for free-stream Mach numbers of 1.2, 1.3, 1.4, 1.5, and -2.0 the surface
extents of perceptible impingement on the wedge (where B= 0.0l Bgy) are

5.35, 6.05, 6.65, 7.20, and 9.4 feet, respectively.

The effect of the droplet size on B is presented in figure 4(d)
for droplet diameters of 10, 20, 30, 40, 50, and 100 microns. The surface
extent of impingement and the values of B at any given distance S are
considerably increased as the droplet size is increased. For example,
for the semi-apex angle presented in the figure (tan o = 0.086), at
S = 3 feet the values of B are 0.0000, 0.0033, 0.0106, 0.0182, 0.0244,
end 0.0417 for values of droplet diameter of 10, 20, 30, 40, 50, and
100 microns, respectively. The surface extent of perceptible impingement
has values of 1.5, 5.7, 11.2, 18.1, and 28.0 feet for droplet diameters
of 10, 20, 30, 40, and 50 microns, respectively. As shown by the pre-
ceding discussion and also by a comparison of the values of $ as a
function of S (fig. 4), verying the droplet diameter from 20 to
30 microns or from 30 to 40 microns is of the same order of magnitude in




16 NACA TN 2971

its effect on the B against S curve as varying the pressure altitude
from sea level to 30,000 feet or varying the free-stream Mach number from

1.2 to 1.5.

Total impingement on wedge. - The effect of the free-stream Mach
number, the semi-apex angle of the wedge, the pressure altitude, and the
droplet size on the total impingement on a wedge surface of infinite
extent is given in figure 5. The total impingement is represented by
{m, which is the § of the droplet having its trajectory tangent to the

wedge surface (theoretically thé tangent trajectory touches the wedge
surface at a point S—). This {5 can be obtained from the integra-

tion

§m.=‘J:D B as

or more directly from equation (13) of the analytical solution, as

¢y = Xy 8in 6 tan ® +0)

where x, is given by equation (9) and is also defined in appendix A.
The value for X, is obtained from the expression for x (eq. (7)) by

allowing T-—»o. Since the droplet which enters the flow field downstream
of the shock wave at a distance { equal to {, (fig. 1) theoretically

impinges on the wedge surface only as the surface distance S approaches
infinity, only droplets which have a value of { equal to or less than
Cm will impinge on the wedge surface of infinite extent. The rate of

total water catch on one wedge surface in terms of gm is given as

W, = 0.3294 Viw

where W, 1s obtained in pounds per hour per foot of span, V; 1s the
free-stream velocity in miles per hour, and w is the liquid-water
content in grams per cubic meter. Therefore, §m is directly proportional

to the rate of total water catch on the entire wedge surface and is the
rate of total water catch on one wedge surface per unit of span, free-
stream velocity, and liquid-water content (in appropriate unitss.

The variation of {; with the tangent of the wedge semi-apex angle,
tan o, is shown in figure 5(a) for free-stream Mach numbers of 1.2, 1.3,
1.4, and 2.0. As expected from the curves of B as a function of S,
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the value of {y Increases as tan o increases. However, the rate of
the increase in §m with respect to tan o decreases with an increase

in tan o. As can be seen from figure 5(a), increasing the free-stream
Mech number increases the value of Qm. for a constant value of tan o.

The variation of Qm with pressure altitude is presented in fig-

ure 5(b) for two Mach numbers. In the range of pressure altitudes from
sea level to 30,000 feet, the increase of €, with an increase in pres-

sure altitude is approximately linear. The variation of {; with the
droplet diameter d in microns is presented in figure 5(c). In the
range of droplet diameter from 10 to 100 microns, §m as a function of d

results in a curve that is very nearly a straight line when plotted on
logerithmic paper. This linearity permits an accurate interpolation of
gm when calculations have been made for a few droplet diameters for a

given value of wedge semi-apex angle, free-stream Mach number, and pres-
sure altitude.

Droplet velocities at impingement. - The varigtion of Va im/vl
J

(the ratio of the droplet impingement velocity to the free-stream velocity)
with the surface distance along the wedge is presented in figure 6 for
three cases. The three cases given in figure 6 are representative of the
results when the dréplet diameter d is 20 microns and the pressure
eltitude is 15,000 or 30,000 feet. The curves of Vﬁ,inJvi as a func-

tion of S have characteristics similar to the curves which present B
as a function of S. At S = O, obviously, all the curves have vd,im/vl

equal to unity; and as S 1s increased, the value of the velocity ratio
rapidly decreases and asymptotically approaches Vz/Vl, the ratio of the

alr velocity downstream of the shock wave to the air velocity upstream of
the shock wave. The top curve in figure 6 illustrates a typical situation
for which VZ/Vl is very nearly unity (tan o = 0.02 and M; = 2.0).

The two lower curves (tan ¢ = 0.06 and 0.10 at M; = 1.3) are typical

for cases where a stronger shock wave produced by & larger semi-apex angle
results in decreased values of Vd,im/vl for large values of 8.

Diamond Airfoil

As shown in the ANALYSIS, the local impingement efficiency B at
any point on the forward surfaces of a diamond airfoil (surfaces AB and
AC shown in fig. 3) can be obtained directly from the results for the
local impingement efficiency as a function of the surface distance for
wedges. The local impingement efficiency B may be obtiained from fig-
ure 4 or equation (17).
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In general, the results for the impingement on a diamond airfoil
are presented in this report in terms of the total collection efficiency
E, as a function of the scale parameter V¥, in the attempt to conform

with the existing literature on the impingement characteristics of air-
-foils. 1In the notation of the present report, the total collection effi-
clency E; as stated in references 7 and 8 is defined as

where T is the meximum thickness of the diamond airfoil, and |§u|
and |gz| are the absolute values of the initial displacements from the

leading edge (in a direction normal to free-stream direction) of the
droplet trajectories which impinge at the shoulder of the upper and lower
surfaces, respectively, of the diamond airfoll. For the symmetrical
diamond airfoil at zero angle of attack, [{,| and |{;| will be equal.

For the symmetrical diamond alrfoil at an angle of attack, the tangent
of which is equal to the thickness ratio, the value of |gu| is equal

to zero.

The scale parameter ¢ 1is calculated for the diemond airfoil at
supersonlic speeds as for other airfoils at subsonic speeds. It is defined

:
- (©)(2) (@s)

where ¢ 18 the chord length of the diamond airfoil. The results pre-
sented for impingement on diamond airfoils use essentially the same
parameters as used for impingement on wedges. The parameters are: free-
stream Mach number, pressure altitude, diamond airfoil thickness ratio,

and droplet size. In addition, angle of attack and chord length are
specified for the dliamond alrfoil.

Total collection efficiency at zero angle of attack. - The variation
of the total collection efficiency E; with respect to the scale param-

eter ¥ 1is presented in figure 7 for the dilamond airfoil at zero angle
of attack. The effects of pressure altitude, airfoil thickness ratio,
free-stream Mach number, and droplet size are shown.

The effect of pressure eltitude on the variation of E; with V¥

for a 2-percent-thick diamond airfoil is given in figure 7(a) for zero
angle of attack, free-stream Mach nmumber of 1.4, droplet diameter of
20 microns, and free-stream static temperature of 440° R. The pressure
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altitudes presented in the figure are for sea level, 15,000 feet, and
30,000 feet. The lines for constant values of chord length from 1 to

20 feet are also included in the figure. For the diamond airfoil sub-
Jected to a constant-velocity supersonic flow field, the total collection
efficiency E, increases as the pressure altitude is increased when the

chord length and the other variebles are held constant. Considering By

as a function of scale paremeter V where the droplet free-stream
Reynolds number Re; 1s held constant yields results similar to those

for airfoils having rounded leading edges at subsonic speeds. With Rel
held constant, the value of E; decreases as V¥ increases in the manner

indicated in figure 7(a). As previously mentioned, a comparison of the
total collection efficiency and also the water impingement rate for a
diamond alrfoil at zero angle of attack with those for a NACA 0006-64
airfoil at zero angle of attack is presented in appendix C.

The effect of airfoil thickness ratio on the variation of E, with

¥ 1s presented in figure 7(b). The curves are presented for 2- to
l4-percent-thick diamond airfoils (in steps of 2 percent) at zero angle

of attack, free-stream Mach number of 1.4, pressure altitude of

15,000 feet, droplet diameter of 20 microns, and free-stream static
temperature of 4400 R. The droplet free-stream Reynolds number is main-
tained at a value of 453 for all the curves. The effect of increasing

the airfoil thickness ratio is to decrease the total collection efficiency.
The rate of decrease in the E; with an increase in the airfoil thickness

ratio becomes somewhat smaller as the airfoil thickness ratio increases.

The effect of free-stream Mach number on the varistion of total
collection efficiency En with scale parameter ¥ is shown in fig-

ure 7(c). The curves presented are for free-stream Mach numbers of 1.1,
1.2, 1.3, 1.4, 1.5, and 2.0, 2-percent-thick diemond airfoil, zero angle

of attack, pressure altitude of 15,000 feet, droplet diameter of 20 microns,
and free-stream static temperature of 440° R. The results in the figure
show that the collection efficiency increases as the free-stream Mach
number increases. However, the increase in the total collection efficiency
from the free-stream Mach number of 1.1 to 1.2 is considerably greater

than the increase in efficiency from a free-stream Mach number of 1.2 to
1.3 and from 1.3 to 1.4, and so forth. Calculations for 4- and 6-percent-
thick dismond airfoils indicate the same trend. For the 2-percent-thick
diamond airfoil the lowest Mach number presented in figure 7(c) (M = 1.1)
1s quite close to the limiting Mach mumber for shock-wave attachment.
Therefore, the rate of decrease of total collection efficiency with
decreases in free-stream Mach number increases as the Mach number
approaches the shock-wave attachment Mach number as a limit.
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The effects of droplet size and chord length on the variation of
total collection efficiency E; with scale parameter ¥ are shown in

figures 7(d) and (e). Figure 7(d) presents curves of E, against
for a 2-percent-thick diamond airfoll, zero angle of attack, pressure
altitude of 15,000 feet, free-stream Mach number of 1.4, and free-stream
static temperature of 440° R. The curves presented in the figure are for
constant values of droplet diameter (4 = 10, 20, 30, 40, and 50 microns)
as well as for constant values of chord length (¢ =1, 2, 4, 8, and

20 £t). Increasing the droplet size greatly increases the total collec-
tion efficlency. For example, at c = 8 feet, the values of E; are

0.096, 0.310, 0.495, 0.625, and 0.711 at droplet diameters of 10, 20, 30,
40, and 50 microns, respectively. The rate of increase in the total
collection efficiency as the droplet diemeter increases 1s less for the
larger droplet sizes. This effect can also be observed in figure 7(e),

in which curves of Ep as a function of ¥ are presented for a 6-percent-
thick diamond airfoil, zero angle of attack, pressure altitude of

15,000 feet, free-stream Mach number of 1.3, free-stream static tempera-
ture of 4400 R, and for droplet diameters of 2, 10, 20, 30, 40, 50, and
100 micromns.

A comperison of figures 7(b) and (c) (same droplet size and pressure
eltitude) shows that the effect on the total collection efficiency E,

of an increase in the free-stream Mach number from 1.1 to 2.0 1s, in
general, of the same order of megnitude as a decrease from a 14- to a
2-percent-thick diasmond airfoil. For example, for ¢ of 1790

(c = 8 £t) in figure 7(b), the values of Ep decreased from 0.310 to

0.165 for an increase from a 2- to a l4-percent-thick diamond airfoil,
respectively, a decrease of 0.145 in the value of E;. For ¥ of 1790

(c = 8 £t) in figure 7(c), the values of E; increased from 0.230 to

0.400 for an increase in the free-stream Mach number from 1.1 to 2.0,
respectively, an increase of 0.170 in the value of E,.

Another comparison of figures 7(c) and (d) (same airfoil thickness
ratio and pressure altitude) shows that the effect on the total collection
efficiency E,; of an increase in the droplet diameter from 10 to
50 microns is much greater than an increase in the free-stream Mach muuber
from 1.1 to 2.0. For example, for ¢ = 8 feet in figure 7(d) the value
of E, increased from 0.095 to 0.710 for an increase in the droplet

diameter from 10 to 50 microns, respectively, which is an increase of
0.615 in the velue of Ep. As stated previously, for ¢ = 8 feet

(v = 1790) 1in figure 7(c) the increamse in the value of Ep is 0.170 for
a corresponding increase in the value of the free-stream Mach number from

1.1 to 2.0. For a constant value of the chord length, varying the pres-
sure altitude has & relatively small effect on the total collection effi-

ciency (fig. 7(a)).
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Total collection efficiency as function of angle of attack of
diamond airfoil. - The previous discussion is concerned with the total
collection efficiencies for the diamond airfoll at zero angle of attack
only. The effect of angle of attack on the total collection efficilency
is presented in figure 8, in which the variation of Ep with the angle
of attack o is shown for 1- to 8-percent-thick diamond airfoils, inclu-
sive, pressure altitude of 15,000 feet, free-stream Mach number of 1.4,
droplet diesmeter of 20 microns, and chord lengths of 1, 2, 4, and 1z feet.
The range in the angle of attack presented in figure 8 is from a of

zero to o of tan~1 (T/c).

The total collection efficiency decreases slightly as the angle of
attack increases. The slope of the curve of E; against tan a 1s zero

at o = 0, by virtue of the symmetry of the diamond airfoil. As the
angle of attack increases, the slope of the Ep against tan o curve

becomes negative, the rate of change becoming more pronounced as the
angle of attack a increases. The effect of Increasing the chord length
of the diamond airfoil is to decrease slightly the rate of decrease of
E, with respect to the angle of attack . A significant polnt that is

well-illustrated in figure 8 is that, for a constant value of chord length,
there apparently exists an envelope of the family of Ep against tan a

curves that have the airfoil thickness ratio T/c as the parameter. This
envelope curve presents, in terms of the angle of attack, the maximum
total collection efficiency that can be obtained for a diamond airfoil of
any thickness ratio, where the droplet size, free-stream Mach mumber,
pressure altitude, and chord length are considered to be constant.

For the diamond sirfoil at a free-stream Mach number greater than
the shock-weve attachment Mach number, the decrease in total collection
efficiency with an increase in angle of attack is opposed to the trend
experienced by rounded-leading-edge airfoils at subsonic Mach mumbers
(irrespective of the symmetry of the airfoil). For the latter type of
airfoil et subsonic speeds the increase in total collection efficiency
(as defined herein) with increasing angle of attack is accounted for by
the greatly increased impingement that occurs on the lower surfaces of
these airfoils at angle of attack. The reduction of impingement occurring
on the upper surfaces of these airfoils at angle of attack is more than
balanced by the increased impingement occurring on the lower surfaces.

On the other hand, for a given diamond airfoil at supersonic speeds with
an attached shock wave, the rate of increase with angle of attack of the
impingement on the lower surface is less in magnitude than the rate of
decrease with angle of attack of the impingement on the upper surface.
This general trend for the diamond airfoil can be explained with the help
of the figure 5(a), in which the effect of tan ¢ (tangent of the semi-
apex angle) on the total impingement rate is presented for a wedge of
infinite extent.
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The forward upper surface of a diamond airfoil effectively acts as
the finite portion of one surface of an infinite wedge which is decreasing
its semi-apex angle (effectively the thickness of wedge) as the angle of -
attack of the diamond airfoil increases. The forward lower surface of a
diamond airfoil effectively acts as the finlte portion of one surface of
an infinite wedge that is increasing its seml-apex angle as the angle of
attack of the dlamond airfoil increasses. In figure 5(a) the increase in
Qm, which 1s exactly proportional to the total impingement rate (see

appendix A), becomes smaller with an increase in tan o (i.e.,
d2 ¢ /d(tan 0)2 < 0) for all possible values of the semi-apex angle o.

For example, in figure 5(a) for the curve of M; = 1.4, the impingement

on an 8-percent-thick diamond airfoll of large chord extent and at zero
angle of attack would be very nearly proportional to twice the value of
tm at %tan o of 0.08 (2{, = 0.146 £t). The impingement for the same

alrfoil under the same conditions and at an angle of attack of 2.2910
(tan @ = 0.04) would be very nearly proportionsl to the sum of Qm at

ten ¢ of 0.04 and 0.12 (& y + {p 3 = 0.046 + 0.0905 = 0.1365 £t).
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Potal collection efficiency as function of modified ilnertia param-
eter. - The total collection efficiency E; 1is presented in figure 9 as
a function of the modified inertia parameter K;, as suggested in refer-

ence l14. The relation for Ko is

Ko = (M)XK

where K 1is the Inertia parameter and is defined as
2
p. acv
w1l
K = (2/9) ——0=
(2/9)

and A 1is the meximmm distance of travel of a droplet projected into
still air with the free-stream velocity V3. The term Aj is the value

of the maximum distance of travel A +when Stokes'! law is assumed for the
drag force on the droplet. Since K is equal to Ag/c (ref. 4), X,

may also be written as
Ko = (MN)K =2/c
The free-stream droplet Reynolds numbers used herein in calculating “

Ky range up to 2104. The empirical drag law (eq. (5)) used in this
report for the droplet motion in the moving reference frame is valid up
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to the Reynolds number of approximately 500. Therefore, for the values
of Ky presented in figure 9 (and also fig. 10), the values of (%/A )

were obtained from table I of reference 4.

The correlation of the total collection efficiency as a f?nction of
the modified inertia parameter Ko 1is shown in figure 9(a) for pressure

altitudes of sea level, 15,000, and 30,000 feet, and for droplet diameters
varying from 2 to 100 microns For the 6-percent thick diamond airfoil
at My = 1.3 and zero angle of attack presented in figure 9(a), the

droplet free-stream Reynolds number Re; varies from 42.1 to 2104. The
velues of E; for a given thickness ratio, Mach number, and angle of

attack generally form the basis for a single curve with a small amount of
scatter existing in the higher range of value of Ko In the lower range

of X,y, for all the values of Re; the plotted points have negligible
scatter. The small scatter observed is possibly due to the existence of
a very slight trend of the Ep against Ko curves with Re] for the
higher values of Kg.

The effect of increasing the thickness ratio is presented in fig-
ure 9(b) for 2-, 6-, and l2-percent thick diamond airfoils. Increasing
the thickness ratio displaces the E; against K, curve toward larger

values of Kgy. Changing the thickness ratio of the diamond airfoil does
not alter the shape of the curve itself.

The effect of the free-stream Mach number on the variation of Ep
with Ky 1is presented in figure 9(c) for the 2-percent-thick diamond

eirfoil, droplet diameter of 20 microns, pressure altitude of 15,000 feet,
and for free-stream Mach numbers of 1.1, 1.2, 1.5, and 2.0. Increasing
the Mach number displaces the entire curve of Ey against Ko towards
smeller values of Kgy. As the value of M; increases, the rate of dis-

placement of the curve with increasing M; becomes smaller. The dis-
placement of the curve obtained by increasing the Mach mmber from 1.1
to 1.2 is more than that obtained by increasing the free-stream Mach
number from 1.2 to 1.5 and from 1.5 to 2.0,

The total collection efficiency for a diamond airfoil can also be
considered as a function of another modified inertia parameter defined as
a relgtive modified inertis parameter. The relative modified inertia
parameter Fn is based on the velocity change of the air across the shock

wave rather than on the free-stream air velocity. This modified inertia
paremeter and its effect on the total collection efficiency of a diamond
airfoil are presented and discussed in appendix D.
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SUMMARY OF RESULTS

This report presents an analysis of the problem of impingement of
water droplets on & wedge and a diamond airfoil at supersonic speeds and
with attached shock waves. When a suitgble empirical relation is used
for the drag coefficient of a sphere, the analysis allows a closed-form
integration of the equations of motion for the water droplets. The
integration results in analytical expressions for the equation of the
trajectories, the droplet velocity at any point on the trajectories, the
local impingement efficiencies, and the total rate of impingement. The
results of the calculations of the rate, extent, and distribution of the
impingement of water droplets on wedges and diamond airfoils are summa-
rized briefly as follows (the Mach number referred to is the free-stream
Mach number, which is greater than the attachment Mach nmumber for the
wedge or the diamond airfoil):

1. At a given value of Mach number, droplet size, and pressure alti-
tude, the local impingement efficlency as a function of the dimensional
surface distance is the same for both the wedge and the diamond airfoil
at zero angle of attack, provided the tangent of the semi-apex angle of
the wedge is equal to the diamond airfoil thickness ratio.

2. For any Mach number, pressure altitude, and droplet diameter, the
value of Bo 1is equal to the sine of the semi-apex angle for wedge or
diamond airfoil. (By 1is the value (meximum) of local impingement
efficiency as distance from leading edge to point of impingement
approaches zero.)

3. The effect of the free-stream static temperature on the local
impingement efficiency and total collection efficiency is negligible for
temperatures from 4200 to 460° R.

4. At constant values of Mach number, droplet size, and semi-apex
angle of the wedge or corresponding thickness ratio of the diasmond air-
foll, an increase in the pressure altitude increases slightly the local
impingement efficiencies and total collection rates on wedges and diamond
airfoils; but an increase in the pressure altitude has a negligible
effect on the surface extent of perceptible impingement.

5. At constant values of Mach number, droplet size, and pressure
altitude, increasing the thickness ratio of the diamond airfoil or corre-
sponding semi-apex angle of the wedge increases the local impingement
efficiency, has a negligible effect on the surface extent of perceptible
impingement, and decreases the total collection efficiency of the diamond
airfoil.

6. At constaent values of droplet size, pressure altitude, and semi-
apeX angle of the wedge or thickness ratio of the diamond airfoil, an
increase in Mach number increases both the surface extent of impingement
and the value of the 'local imningement'efficiency. .
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7. At constant values of pressure altitude, semi-apex angle of the
wedge or thickness ratio of the diamond airfoil, and Mach number, an
increase in the droplet size increases considerably the surface extent
of perceptible impingement, the local lmpingement efficiency, and totael

impingement rate.

8. The variation of total collection efficiency of the diamond air-
foll at zero angle of attack as a function of the scale parameter for
constant values of the droplet free-stream Reynolds number is similar in
form to that for subsonic airfoils.

9. The total collection efficiency of the diamond airfoil decreases
slightly as the angle of attack increases.

10. For & diamond airfoil of a given thickmess ratio and Mach
number, the values of total collection efficiency for a wide range of
values of droplet free-stream Reynolds number comprise a single curve
when plotted against the modified inertia parameter. The effect of
increasing the thickness ratio or decreasing the Mach number is to dis-
place the entire collection efficiency against modified inertia parameter
curve in the directlion of larger values of modified inertia parameter.

Lewis Flight Propulsion laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 21, 1953
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

Rep

droplet radius, £t

airfoil chord length, £t

2782

drag coefficient, dimensionless

drag force on spherical Wéter droplet, 1b
droplet diameter, microns

total collection efficiency (defined by eq. (22)), dimension-
less

pwazUi *n,s
relative inertia parameter, (2/9) o = é , dimensioniess
1
relative modified inertia parameter, (xjﬁn )(E‘%ﬁ) = .li_m
m, s

acceleration due to gravity, 32.2 ft/sec2 .

2
Vi A
inertia parameter, (2/9) EEEE_; = 7?, dimensionless
1

modified inertia perameter, (A/A)K = %3 dimensionless

free-stream Mach number

empirical constant (used in eq. (5)), 2/3

constants of flow field (defined by egs. (18a), (18b), and (18c),
respectively)

free-stream static pressure, lb/sq £t

gas constant, 53.3 f£t-1b/(1b)(OF) )

droplet Reynolds number relative to air behind shock wave,
2apyU/us, dimensionless )
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Rel

S-

free-stream droplet Reynolds mumber, Zaprl/ul, dimensionless

distance to point of impingement-measured from lead;ﬁg edge
for a water droplet which enters the flow field behind the
shock wave at a distance { above the leading edge
(eq. (15) and fig. 1), £t

maximum thickness of airfoil, ft

ratio of maximum thickness to chord length of airfoil, dimen-
sionless )

time, sec

free-stream static temperature, CR

magnitude of droplet velocity relative to air velocity down-
stream of shock wave, ]Vd - V5|, fps :

droplet velocity, fps

free—stream velocity, fps or mph

air velocity downstream of shock wave, fps

fate of water catch, 1b/(hr)(ft span)

local rate of water catch, 1b/(hr)(sq £t surface)

liquid-water content of air, g/cu m

J;t U dt, displacement of droplet in moviné frame of reference

(relative to air stream), where t = O the instant the water
droplet intercepts the shock wave

maximim value of displacement x as T—c as a limit

(maximm distance of travel of droplet projected into still
air with relative velocity Uj), ft

value of maximm distance of travel x; obtained by assuming
. Btokes' law for drag force on droplet, ft

angle of attack of airfoii, deg
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local impingement efficiency, dtf/dS, dimensionless

maximm value of B as S-—0; By = sin o, dimensionless

ratio of specific heats (1.4 for air)
empirical constant (used in eq. (5)), 0.158, dimensionless

initial displacement of droplet trajectories from leading
edge in direction normal to free-stream direction (eq. (13))

meximm velue of initial displacement { for a droplet
obtained when 1ts trajectory is tangent to wedge surface
(theoretically as S—®)

absolute values of Initial displacement from leading edge
{in direction normal to free-stream direction) of droplet
trajectories which impinge at shoulder of upper and lower
surfaces, respectively, of diamond airfoil

distance along shock wave measured from wedge apex to point
where droplet trajectory intercepts shock wave

shock-wave angle
angle between free-stream velocity vector Vi and droplet
velocity vector V&

maximm distence of travel of droplet projected into still ailr
with free-stream velocity V;, £t

value of distance of travel A obtained by assuming Stokes'
law for dreg force on water droplet, ft

dynamic viscosity at free-stream static temperature,
(1v)(sec)/sq £t

dynamic viscosity at static temperature downstream of shock
wave, (1b)(sec)/sq £t

angle between free-stream velocity vector Vl and initial
relative velocity vector Uy, (defined by eq. (13a))

components of droplet displacement referred to wedge surface
(defined by eq. (12)), £t
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Py water-droplet mass density, 1.9398 slugs/cu ft

Py free-stream mass density of air, slug/cu £t

Py mass density of air downstream of shock wave, slug/cu ft

o] semi-apex angle

a' angle between droplet velocity vector V, and velocity
vector 72

T dimensionless time variable, (3u,/p,a%)t

® phase angle, tan"l(Rer,i‘l/:se'l/z), 02 9= n/2 (eq. (9))

scale parsmeter, (9c/a)(pl/pw)

0 ratio of air velocity downstream of shock wave to free-stream
velocity V, /Vl

w ratio of initial droplet relative wvelocity to free-stream
velocity Ui/vl

Subscripts:

i initial (at shock wave)

im impingement

1 lower

m maxXimum

u upper

Barred symbols denote vectorial quantities.
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APPENDIX B

CLOSED-FORM INTEGRATION OF EQUATION OF MOTION
(RELATIVE TO ATR FLOW DOWNSTREAM OF SHOCK WAVE)

This eppendix provides the various steps necessary to the closed-
form integration of equation (6), which is the differential equation of
motion of the water droplet in the moving reference frame. The differ-
ential equation of motion (6) can be rewritten as

au o\ 240 mm,
3 - (-AI)(a—.z—-) (l + €Al a (Bl)
where for convenience

Re, = AUs (B2)
Ay = — B3
1= 0 (B3)

0

372
Az =3 5. (Ba)

(A complete list of symbols is given in appendix A.) Algebraic simplifi-
cation and rewriting result in the form

Az 4U
dt = - ————— (B5)
C U1+ A4Um)
where
hg = (A /By )(a2/24) | (86)
and

A4_ = €Almam i (B7)

2782



28L2

NACA TN 2971 31
Equation (B5) 1s not readily integrable in its present form. By letting

p=TU" (B8)

p' = p/p; = U/u® (B9)

equation (B5) becomes

A4pi dp'

a6 = - (Ag/m)(ap'/p*) + (&s/m) T 55m) (B10)

This form of the equation is readily integrated, and upon resubstituting
the relations (B8) and (B9), there is obtained the following expression
for the velocity of the droplet as a function of the time t:

m o —Lﬁn
U=Uy {exp[(t-Bl)ig] - Uy A,;} (B11)
where By 1s the constant of the integration.

Since U= g%, equation (Bll) can be rewritten in integral form as

fofofofem])- o] Tevn o

where B, is the second integration constant. BEquation (Blz) requires

simplification before a closed-form integration can be performed. Con-
sider the following substitutions:

¥ = (E‘-) t (B13)
3 . o -l/m  Ag -1/m

= (44) (B14)

b = (0"84)™" exp(-Bym/a5) (B15)
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By using the substitutions given by (B13), (Bl4), and (B15), it is
possible to write equation (B12) as

fax =fA5 (age¥ - 1)'1/]"l dy + B, (B16)

Before further steps can be teken in the closed-form integration of the
equation of motion of the droplet, it is necessary to determine the value
of the empirical constant m. It 1s noted that in approximating the
curve of the drag coefficlent as a function of the local Reynolds number
by a relation of the form given by

m

Cp = (24/Re.)(1 + €Re. ) (5)

it is possible to consider that the value of m is 2/3 and the value of
¢ 1s 0.158. That tHe approximetion of the experimental curve by the
empirical relaetion is very good in the range of Reynolds numbers from

about 0.5 to 500 can be seen by referring to figure 2, which presents &

graph of the empirical relation along with the draeg-coefficlent data of
references 4 and 12.

The use of m = 2/3 in eguation (B16) along with the substitution
ed = ¢ (B17)

and the use of formulas of integration given on pages 16 and 17 of refer-~
ence 15 allow equation (B16) to be integrated as shown in the following

steps:
JA Jq(%q - 1)3/2 i

A5 dq A; dq
f Jq(Aeq Tt (hga - 02 B

ot = - =t~ tanlyAg - 1 (B18)
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If the original time or independent variable +t 1s reintroduced into
equation (B18) and the substitutions are made for: Ag and Ag, the equa-

tion has the form

(A4)3/2 (Bz'x) ) (A4U12/3)l/2 ,
SA3 2(t-By) 5
'\/exP[ 3y ]"A'iUi/S
- 2(t-B,)
S RPN oo i e [
(U A)

Substituting for Az and A, (except in the exponent of e) in equa-
tion (B19) results in

1/3 1/2
(2) [/ (..)] ] Ry e ;
a Py 2(t-B,)
«[ =P [‘SAsl"] - me, i
-1 1 2(t-By) 2/3
e Rer,il/5 el/z’\/ o [—3?] TRt € (520)

Equation (B20) is the integrated equation with undetermined integration
constants for the motion of the water droplets relative to the air veloc-

ity behind the shock wave. The integration constants are determined from
the boundary conditions, which are

U=1y
at t =0

x =0

The substitution of the boundary conditions, and thus the determination
of the integration constants By and B;, results in the final form of

the integrated equation of motion for the water droplets'relative to the
air velocity downstream of the ‘shock wave as follows (in the frame of
reference moving with the constant velocity v, ):
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34
a -3/2 (P 1/3 .1/2 -1 -1/3 _-1/2
X ='§ € (—6;) [Rer’i € + tan Re.r’i / € / -
1 - tan™t ;J(Rer 1'2/5 ety 1) el -1
25 T ) et ’
«jCRer’i e +1)el -1
(7)

where
T dimensionless time variable, (3u./p, a?)t

Rer,i initial value of local relative Reynolds number, Re,,, Zaszi/pz

a droplet radius, ft

P, water density, 1.9398 slugs/cu ft

Py density of air behind shock wave, slug/cu ft

€ empirical constant of relation of drag coefficient as function

of Reynolds mmber, 0.158

The final form of the corresponding equation for the relative velocity
of the water droplet as a function of the dimensionless time variable T

is obtained from equation (Bll) as
-3/2
U
U =;._i_37§ l:(Rer,i-Z/s L + l) eT - ]J (8)
Rel‘,i €

It can be seen from equations (7) and (8) that as t approaches infinity
the value of U approaches zero and that a limit exists for the value of
X as t approaches infinity. This limiting value of x is

e 3 2 (22) (e, 5 O -5 1) (o

where p
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APPENDIX C

COMPARISON OF COLLECTION EFFICIENCY AND IMPINGEMENT RATE FOR
DIAMOND ATRFOIL WITH THOSE FOR NACA 0006-64 AIRFOIL

A comparison of the total collection efficiency as a function of a
modified inertia parameter Ky for a diamond airfoil at supersonic

speeds (attached shock wave) with that for the NACA 0006-64 airfoil
(ref. 9) at free-stream Mach numbers less than critical is presented in
figure 10. Both ailrfoils are 6-percent thick and are at zero angle of
attack. It is important to keep in mind that figure 10 does not allow
a comparison of the two airfoils at the same Mach number, and such a
comparison cannot be made, because the analysis for the NACA 0006-64
airfoil is not velld above the critical Mach number and that for the
diamond sirfoil is not valid below the shock-wave attachment Mach number.
It is, however, of value to consider a comparison of the two airfoils
with each operating within its appropriate speed range. In figure 10
the rate of increase in E; with respect to Ky 1is greater for the

diemond airfoil than for the NACA 0006-64. For a constant droplet size,
pressure altitude and temperature, and free-stream Mach number resulting
in a constant value of A, K; varies inversely as the chord length

(Ko =A/c). In general, therefore, the rate of decrease in E, with

increasing chord length is greater in magnitude for the diamond airfoil
than for the NACA 0006-64 airfoil.

A comparison of the rate of total water catch per unit span for the
diamond airfoil with that for the NACA 0006-64 airfoil can be obt&ined
if values (necessarily different) for the free-stream Mach numbers for
the two airfolls are assigned. Assume that both airfoils are of the same
thickness ratio and chord length. Further, assume that the diamond air-
foil and NACA 0006-64 airfoil encounter identical icing conditions of
droplet diameter (20 microms), pressure altitude and temperature
(15,000 £t and 440° R), and liquid-water content (0.5 g/cu m), but have
free-stream Mach numbers of 1.5 and 0.75, respectively. For the static
temperature assumed, the Mach numbers of 1.5 and 0.75 correspond to speeds
of 1051 miles per hour and 526 miles per hour, respectively. Therefore,
the magnitudes of the inertia parameter K and the free-stream droplet
Reynolds pnumber Rej, for the diemond airfoil are twice as great as for the
NACA 0006-64 airfoil. Varying the chord length from 1 to 20 feet produces
a change in the value of K, from 0.386 to 0.0193 for the diamond air-

foil and from 0.266 to 0.0130 for the NACA 0006-64 airfoil. This vari-
ation in Ko for both airfoils results in values of Ep which are of

the same order of magnitude. For the given icing conditions, the follow-
ing taeble lists for chord lengths of 4 and 20 feet the various pertinent
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parameters and variables, including the rate of total water catch on the
airfoil per unit span for both the 6-percent-thick diamond aifroil and
the NACA 0006-64 airfoil:

6-Percent-thick diamond airfoil at M; = 1.5 (Vl = 1051 mph)
Chord. | Free-stream| Inertia A | Modified Total Rate of water
. [Length, droplet |parameter, As inertia |[collection catch, W,
¢, £t | Reynolds K parameter, |efficiency, 1b/(hr)
number , Ko Enp (unit span)
Rel*
4 485 0.542 0.178§ 0.0965 0.432 17.9
20 485 .108 .178 .0193 ,111 23.0
NACA 0006-64 at M; = 0.75 (V; = 526 mph)
4 243 0.271 0.246| 0.0665 0.330 6.85
20 243 .0542 -246 .0130 .128 13.3

*Values of viscosity of air obtained from linear variation with tempera-
ture given in reference 16.

The rate of total water catch on the airfoil per unit span is calculated

from

Wy = 0.329E,TVyw

where T is the maximm thickness of the airfoil in feet, w is the
liquid-water content in grams per cubic meter, and V; is the free-stream

velocity in miles, per hour.

For this particular example, the table shows

that for the 4-foot chord, the diamond airfoil has a somewhat larger
value of E; than the NACA 0006-64 airfoil; and for the 20-foot chord,

the opposite is the case.

Comparison of the two airfoils for a given

chord length shows that, as expected, the effect of the total collection
efficiency on the rate of water catch is small when compared with the

free-stream velocity ratio chosen (2:1).

The most significant comparison

to be obtained from the table is that, for the diamond airfoil, increasing
the chord length by a factor of 5 (from 4 to 20 ft) results in an increase
of only 28 percent in the rate of water catch; whereas, for the NACA air-
foil, a like change in the chord length results in an increase of 94 per-

cent.

This difference is the result of the fact that, unlike the local

impingement on the rounded leading-edge airfoils at free-stream Mach
numbers less than critical, the local impingement at a given point on the
surface of diamond airfoils does not vary with the chord length of the
diemond airfoil, which is at a supersonic Mach number above the shock-

weve gttachment Mach number.
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APPENDIX D

TOTAL COLLECTION EFFICIENCY OF DIAMOND AIRFOILS AS FUNCTION

OF RETATIVE MODIFIED INERTTA PARAMETER Fg

For air-flow flelds that contain a shock wave, such as those con-
sidered herein, the water droplets upon crossing the shock wave suddenly
have a velocity relative to the air. For the diamond airfoil with an
attached shock wave, this initial relative velocity is the same for all
the droplets entering the air-flow field downstream of the shock wave.
As discussed in previous sections, this common initial velocity U; may

be considered to be the initial wvelocity of projection of a droplet in

a reference frame having no air motion in it and moving relative to the
fixed frame of reference at the constant velocity of the air downstream
of the shock wave. Therefore, it is of interest to define a new set of
inertia parameters, F and Fg, based on the motion of the droplet in

this moving reference frame. In the expressions for Rey, K, and K,
if the initial relative droplet air velocity U; is substituted for V,,

then

. _ plUiZa
€r,i T ——pl
pwazUi Xm 8
_ —_ _ =2
F =X (U;/vq) = (2/9) TR

and

o )3
8

where x; (eq. (9)) is the maximum distance of travel of a droplet which

is projected into still air with the relative velocity Ui, and xpm s
is that value of the maximum distance of travel when Stokes' law is
assumed for the drag force on the droplet.

The total collection efficiency E, is presented in figure 11 as a
function of the relative modified inertia parameter Fg. The curves of

E, against Fp have exactly the same form as the curves of By against
Ky, except that the use of Fg results in a displacement of the entire




38 NACA TN 2971

curve towards smaller mmerical values of the absclssa. The effect of
diamond airfoil thickmess ratio and of free-stream Mach number on Ey

as a function of the relative modified inertia parameter Fy 1s presented

in figures 11(a) and (b), respectively. The displacement of the Ej
against Fy curves obtained by varying the thickness ratio (fig. 11(a))

or by varying the free-stream Mach mumber (fig. 11(b)) is greater than
the displacement of the B against Ky curves obtained by the same

procedures (figs. 9(b) and (c))-
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(b) Rffect of thickness ratio of diamond airfolls. Iroplat diamater, 20 microns; freae-streem Mach mmber,
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Fgure 7, - Comtimzed, Total collsction efficiency of diewond airfoils as function of scale paramster. TFree-

straan static temperature, 4i0° Ej angie of atiack, O°.
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Megure 7. - Contimed, Total collection efficlency of diawmond alrfolls as function of scale
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(4) Effect of droplet sire and chord length. Dismond airfoil thickness, 2 percent; fres-stream Mach mber, l.4) Dressure alti-
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Fgure 7. - Contimed. Total collection efficlency of dismond alrfolls as function of scale parameter. Free-stresam static tem-
perature, 440° R; engle of attack, 0%
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